Precision estimation and second-order prediction errors in cortical circuits

27 Sep 2023  ·  Arno Granier, Mihai A. Petrovici, Walter Senn, Katharina A. Wilmes ·

Minimization of cortical prediction errors is believed to be a key canonical computation of the cerebral cortex underlying perception, action and learning. However, it is still unclear how the cortex should form and use knowledge about uncertainty in this process of prediction error minimization. Here we derive neural dynamics minimizing prediction errors under the assumption that cortical areas must not only predict the activity in other areas and sensory streams, but also jointly estimate the precision of their predictions. This leads to a dynamic modulatory balancing of cortical streams based on context-dependent precision estimates. Moreover, the theory predicts the existence of second-order prediction errors, i.e. errors on precision estimates, computed and propagated through the cortical hierarchy alongside classical prediction errors. These second-order errors are used to learn weights of synapses responsible for precision estimation through an error-correcting synaptic learning rule. Finally, we propose a mapping of the theory to cortical circuitry.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here