Predicting Abandonment in Online Coding Tutorials

13 Jul 2017  ·  An Yan, Michael J. Lee, Andrew J. Ko ·

Learners regularly abandon online coding tutorials when they get bored or frustrated, but there are few techniques for anticipating this abandonment to intervene. In this paper, we examine the feasibility of predicting abandonment with machine-learned classifiers... Using interaction logs from an online programming game, we extracted a collection of features that are potentially related to learner abandonment and engagement, then developed classifiers for each level. Across the first five levels of the game, our classifiers successfully predicted 61% to 76% of learners who did not complete the next level, achieving an average AUC of 0.68. In these classifiers, features negatively associated with abandonment included account activation and help-seeking behaviors, whereas features positively associated with abandonment included features indicating difficulty and disengagement. These findings highlight the feasibility of providing timely intervention to learners likely to quit. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here