Predicting Chemical Properties using Self-Attention Multi-task Learning based on SMILES Representation

19 Oct 2020  ·  Sangrak Lim, Yong Oh Lee ·

In the computational prediction of chemical compound properties, molecular descriptors and fingerprints encoded to low dimensional vectors are used. The selection of proper molecular descriptors and fingerprints is both important and challenging as the performance of such models is highly dependent on descriptors. To overcome this challenge, natural language processing models that utilize simplified molecular input line-entry system as input were studied, and several transformer-variant models achieved superior results when compared with conventional methods. In this study, we explored the structural differences of the transformer-variant model and proposed a new self-attention based model. The representation learning performance of the self-attention module was evaluated in a multi-task learning environment using imbalanced chemical datasets. The experiment results showed that our model achieved competitive outcomes on several benchmark datasets. The source code of our experiment is available at https://github.com/arwhirang/sa-mtl and the dataset is available from the same URL.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here