Predicting Li-ion Battery Cycle Life with LSTM RNN

8 Jul 2022  ·  Pengcheng Xu, Yunfeng Lu ·

Efficient and accurate remaining useful life prediction is a key factor for reliable and safe usage of lithium-ion batteries. This work trains a long short-term memory recurrent neural network model to learn from sequential data of discharge capacities at various cycles and voltages and to work as a cycle life predictor for battery cells cycled under different conditions. Using experimental data of first 60 - 80 cycles, our model achieves promising prediction accuracy on test sets of around 80 samples.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods