Predicting the Future: A Jointly Learnt Model for Action Anticipation

Inspired by human neurological structures for action anticipation, we present an action anticipation model that enables the prediction of plausible future actions by forecasting both the visual and temporal future. In contrast to current state-of-the-art methods which first learn a model to predict future video features and then perform action anticipation using these features, the proposed framework jointly learns to perform the two tasks, future visual and temporal representation synthesis, and early action anticipation. The joint learning framework ensures that the predicted future embeddings are informative to the action anticipation task. Furthermore, through extensive experimental evaluations we demonstrate the utility of using both visual and temporal semantics of the scene, and illustrate how this representation synthesis could be achieved through a recurrent Generative Adversarial Network (GAN) framework. Our model outperforms the current state-of-the-art methods on multiple datasets: UCF101, UCF101-24, UT-Interaction and TV Human Interaction.

PDF Abstract ICCV 2019 PDF ICCV 2019 Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here