Predicting variation of DNA shape preferences in protein-DNA interaction in cancer cells with a new biophysical model

31 Oct 2017  ·  Batmanov Kirill, Wang Junbai ·

DNA shape readout is an important mechanism of target site recognition by transcription factors, in addition to the sequence readout. Several models of transcription factor-DNA binding which consider DNA shape have been developed in recent years... We present a new biophysical model of protein-DNA interaction by considering the DNA shape features, which is based on a neighbour dinucleotide dependency model BayesPI2. The parameters of the new model are restricted to a subspace spanned by the 2-mer DNA shape features, which allowing a biophysical interpretation of the new parameters as position-dependent preferences towards certain values of the features. Using the new model, we explore the variation of DNA shape preferences in several transcription factors across cancer cell lines and cellular conditions. We find evidence of DNA shape variations at FOXA1 binding sites in MCF7 cells after treatment with steroids. The new model is useful for elucidating finer details of transcription factor-DNA interaction. It may be used to improve the prediction of cancer mutation effects in the future. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here