Prediction Confidence from Neighbors

31 Mar 2020Mark Philip PhilipsenThomas Baltzer Moeslund

The inability of Machine Learning (ML) models to successfully extrapolate correct predictions from out-of-distribution (OoD) samples is a major hindrance to the application of ML in critical applications. Until the generalization ability of ML methods is improved it is necessary to keep humans in the loop... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet