Prediction Error Reduction Function as a Variable Importance Score

25 Jan 2015  ·  Ernest Fokoué ·

This paper introduces and develops a novel variable importance score function in the context of ensemble learning and demonstrates its appeal both theoretically and empirically. Our proposed score function is simple and more straightforward than its counterpart proposed in the context of random forest, and by avoiding permutations, it is by design computationally more efficient than the random forest variable importance function. Just like the random forest variable importance function, our score handles both regression and classification seamlessly. One of the distinct advantage of our proposed score is the fact that it offers a natural cut off at zero, with all the positive scores indicating importance and significance, while the negative scores are deemed indications of insignificance. An extra advantage of our proposed score lies in the fact it works very well beyond ensemble of trees and can seamlessly be used with any base learners in the random subspace learning context. Our examples, both simulated and real, demonstrate that our proposed score does compete mostly favorably with the random forest score.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here