Predictor Combination at Test Time

We present an algorithm for test-time combination of a set of reference predictors with unknown parametric forms. Existing multi-task and transfer learning algorithms focus on training-time transfer and combination, where the parametric forms of predictors are known and shared. However, when the parametric form of a predictor is unknown, e.g., for a human predictor or a predictor in a precompiled library, existing algorithms are not applicable. Instead, we empirically evaluate predictors on sampled data points to measure distances between different predictors. This embeds the set of reference predictors into a Riemannian manifold, upon which we perform manifold denoising to obtain the refined predictor. This allows our approach to make no assumptions about the underlying predictor forms. Our test-time combination algorithm equals or outperforms existing multi-task and transfer learning algorithms on challenging real-world datasets, without introducing specific model assumptions.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here