PReGAN: Answer Oriented Passage Ranking with Weakly Supervised GAN

5 Jul 2022  ·  Pan Du, Jian-Yun Nie, Yutao Zhu, Hao Jiang, Lixin Zou, Xiaohui Yan ·

Beyond topical relevance, passage ranking for open-domain factoid question answering also requires a passage to contain an answer (answerability). While a few recent studies have incorporated some reading capability into a ranker to account for answerability, the ranker is still hindered by the noisy nature of the training data typically available in this area, which considers any passage containing an answer entity as a positive sample. However, the answer entity in a passage is not necessarily mentioned in relation with the given question. To address the problem, we propose an approach called \ttt{PReGAN} for Passage Reranking based on Generative Adversarial Neural networks, which incorporates a discriminator on answerability, in addition to a discriminator on topical relevance. The goal is to force the generator to rank higher a passage that is topically relevant and contains an answer. Experiments on five public datasets show that \ttt{PReGAN} can better rank appropriate passages, which in turn, boosts the effectiveness of QA systems, and outperforms the existing approaches without using external data.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here