Principal Differences Analysis: Interpretable Characterization of Differences between Distributions

NeurIPS 2015  ·  Jonas Mueller, Tommi Jaakkola ·

We introduce principal differences analysis (PDA) for analyzing differences between high-dimensional distributions. The method operates by finding the projection that maximizes the Wasserstein divergence between the resulting univariate populations. Relying on the Cramer-Wold device, it requires no assumptions about the form of the underlying distributions, nor the nature of their inter-class differences. A sparse variant of the method is introduced to identify features responsible for the differences. We provide algorithms for both the original minimax formulation as well as its semidefinite relaxation. In addition to deriving some convergence results, we illustrate how the approach may be applied to identify differences between cell populations in the somatosensory cortex and hippocampus as manifested by single cell RNA-seq. Our broader framework extends beyond the specific choice of Wasserstein divergence.

PDF Abstract NeurIPS 2015 PDF NeurIPS 2015 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here