Principles for Developing a Knowledge Graph of InterlinkedEvents from News Headlines on Twitter

The ever-growing datasets published on Linked Open Data mainly contain encyclopedic information. However, there is a lack of quality structured and semantically annotated datasets extracted from unstructured real-time sources. In this paper, we present principles for developing a knowledge graph of interlinked events using the case study of news headlines published on Twitter which is a real-time and eventful source of fresh information. We represent the essential pipeline containing the required tasks ranging from choosing background data model, event annotation (i.e., event recognition and classification), entity annotation and eventually interlinking events. The state-of-the-art is limited to domain-specific scenarios for recognizing and classifying events, whereas this paper plays the role of a domain-agnostic road-map for developing a knowledge graph of interlinked events.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here