Prior and Likelihood Choices for Bayesian Matrix Factorisation on Small Datasets

1 Dec 2017  ·  Thomas Brouwer, Pietro Lio' ·

In this paper, we study the effects of different prior and likelihood choices for Bayesian matrix factorisation, focusing on small datasets. These choices can greatly influence the predictive performance of the methods. We identify four groups of approaches: Gaussian-likelihood with real-valued priors, nonnegative priors, semi-nonnegative models, and finally Poisson-likelihood approaches. For each group we review several models from the literature, considering sixteen in total, and discuss the relations between different priors and matrix norms. We extensively compare these methods on eight real-world datasets across three application areas, giving both inter- and intra-group comparisons. We measure convergence runtime speed, cross-validation performance, sparse and noisy prediction performance, and model selection robustness. We offer several insights into the trade-offs between prior and likelihood choices for Bayesian matrix factorisation on small datasets - such as that Poisson models give poor predictions, and that nonnegative models are more constrained than real-valued ones.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here