Privacy and Utility Preserving Sensor-Data Transformations

14 Nov 2019  ·  Mohammad Malekzadeh, Richard G. Clegg, Andrea Cavallaro, Hamed Haddadi ·

Sensitive inferences and user re-identification are major threats to privacy when raw sensor data from wearable or portable devices are shared with cloud-assisted applications. To mitigate these threats, we propose mechanisms to transform sensor data before sharing them with applications running on users' devices... These transformations aim at eliminating patterns that can be used for user re-identification or for inferring potentially sensitive activities, while introducing a minor utility loss for the target application (or task). We show that, on gesture and activity recognition tasks, we can prevent inference of potentially sensitive activities while keeping the reduction in recognition accuracy of non-sensitive activities to less than 5 percentage points. We also show that we can reduce the accuracy of user re-identification and of the potential inference of gender to the level of a random guess, while keeping the accuracy of activity recognition comparable to that obtained on the original data. read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here