Privacy-Friendly Peer-to-Peer Energy Trading: A Game Theoretical Approach

5 Jan 2022  ·  Kamil Erdayandi, Amrit Paudel, Lucas Cordeiro, Mustafa A. Mustafa ·

In this paper, we propose a decentralized, privacy-friendly energy trading platform (PFET) based on game theoretical approach - specifically Stackelberg competition. Unlike existing trading schemes, PFET provides a competitive market in which prices and demands are determined based on competition, and computations are performed in a decentralized manner which does not rely on trusted third parties. It uses homomorphic encryption cryptosystem to encrypt sensitive information of buyers and sellers such as sellers$'$ prices and buyers$'$ demands. Buyers calculate total demand on particular seller using an encrypted data and sensitive buyer profile data is hidden from sellers. Hence, privacy of both sellers and buyers is preserved. Through privacy analysis and performance evaluation, we show that PFET preserves users$'$ privacy in an efficient manner.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here