Privacy in Deep Learning: A Survey

25 Apr 2020  ·  Fatemehsadat Mireshghallah, Mohammadkazem Taram, Praneeth Vepakomma, Abhishek Singh, Ramesh Raskar, Hadi Esmaeilzadeh ·

The ever-growing advances of deep learning in many areas including vision, recommendation systems, natural language processing, etc., have led to the adoption of Deep Neural Networks (DNNs) in production systems. The availability of large datasets and high computational power are the main contributors to these advances... The datasets are usually crowdsourced and may contain sensitive information. This poses serious privacy concerns as this data can be misused or leaked through various vulnerabilities. Even if the cloud provider and the communication link is trusted, there are still threats of inference attacks where an attacker could speculate properties of the data used for training, or find the underlying model architecture and parameters. In this survey, we review the privacy concerns brought by deep learning, and the mitigating techniques introduced to tackle these issues. We also show that there is a gap in the literature regarding test-time inference privacy, and propose possible future research directions. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here