Privacy-Preserving Logistic Regression Training with A Faster Gradient Variant

26 Jan 2022  ·  John Chiang ·

Logistic regression training over encrypted data has been an attractive idea to security concerns for years. In this paper, we propose a faster gradient variant called $\texttt{quadratic gradient}$ for privacy-preserving logistic regression training. The core of $\texttt{quadratic gradient}$ can be seen as an extension of the simplified fixed Hessian. We enhance Nesterov's accelerated gradient (NAG) and Adaptive Gradient Algorithm (Adagrad) respectively with $\texttt{quadratic gradient}$ and evaluate the enhanced algorithms on several datasets. %gradient $ascent$ methods with this gradient variant on the gene dataset provided by the 2017 iDASH competition and other datasets. Experiments show that the enhanced methods have a state-of-the-art performance in convergence speed compared to the raw first-order gradient methods. We then adopt the enhanced NAG method to implement homomorphic logistic regression training, obtaining a comparable result by only $3$ iterations. There is a promising chance that $\texttt{quadratic gradient}$ could be used to enhance other first-order gradient methods for general numerical optimization problems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods