Privacy-preserving Transfer Learning via Secure Maximum Mean Discrepancy

24 Sep 2020  ·  Bin Zhang, Cen Chen, Li Wang ·

The success of machine learning algorithms often relies on a large amount of high-quality data to train well-performed models. However, data is a valuable resource and are always held by different parties in reality. An effective solution to such a data isolation problem is to employ federated learning, which allows multiple parties to collaboratively train a model. In this paper, we propose a Secure version of the widely used Maximum Mean Discrepancy (SMMD) based on homomorphic encryption to enable effective knowledge transfer under the data federation setting without compromising the data privacy. The proposed SMMD is able to avoid the potential information leakage in transfer learning when aligning the source and target data distribution. As a result, both the source domain and target domain can fully utilize their data to build more scalable models. Experimental results demonstrate that our proposed SMMD is secure and effective.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here