Private Mean Estimation of Heavy-Tailed Distributions

21 Feb 2020  ·  Gautam Kamath, Vikrant Singhal, Jonathan Ullman ·

We give new upper and lower bounds on the minimax sample complexity of differentially private mean estimation of distributions with bounded $k$-th moments. Roughly speaking, in the univariate case, we show that $n = \Theta\left(\frac{1}{\alpha^2} + \frac{1}{\alpha^{\frac{k}{k-1}}\varepsilon}\right)$ samples are necessary and sufficient to estimate the mean to $\alpha$-accuracy under $\varepsilon$-differential privacy, or any of its common relaxations. This result demonstrates a qualitatively different behavior compared to estimation absent privacy constraints, for which the sample complexity is identical for all $k \geq 2$. We also give algorithms for the multivariate setting whose sample complexity is a factor of $O(d)$ larger than the univariate case.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here