PrivateRec: Differentially Private Training and Serving for Federated News Recommendation

18 Apr 2022  ·  Ruixuan Liu, Yanlin Wang, Yang Cao, Lingjuan Lyu, Weike Pan, Yun Chen, Hong Chen ·

Collecting and training over sensitive personal data raise severe privacy concerns in personalized recommendation systems, and federated learning can potentially alleviate the problem by training models over decentralized user data.However, a theoretically private solution in both the training and serving stages of federated recommendation is essential but still lacking.Furthermore, naively applying differential privacy (DP) to the two stages in federated recommendation would fail to achieve a satisfactory trade-off between privacy and utility due to the high-dimensional characteristics of model gradients and hidden representations.In this work, we propose a federated news recommendation method for achieving a better utility in model training and online serving under a DP guarantee.We first clarify the DP definition over behavior data for each round in the life-circle of federated recommendation systems.Next, we propose a privacy-preserving online serving mechanism under this definition based on the idea of decomposing user embeddings with public basic vectors and perturbing the lower-dimensional combination coefficients. We apply a random behavior padding mechanism to reduce the required noise intensity for better utility. Besides, we design a federated recommendation model training method, which can generate effective and public basic vectors for serving while providing DP for training participants. We avoid the dimension-dependent noise for large models via label permutation and differentially private attention modules. Experiments on real-world news recommendation datasets validate that our method achieves superior utility under a DP guarantee in both training and serving of federated news recommendations.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here