PrivLogit: Efficient Privacy-preserving Logistic Regression by Tailoring Numerical Optimizers

3 Nov 2016  ·  Wei Xie, Yang Wang, Steven M. Boker, Donald E. Brown ·

Safeguarding privacy in machine learning is highly desirable, especially in collaborative studies across many organizations. Privacy-preserving distributed machine learning (based on cryptography) is popular to solve the problem. However, existing cryptographic protocols still incur excess computational overhead. Here, we make a novel observation that this is partially due to naive adoption of mainstream numerical optimization (e.g., Newton method) and failing to tailor for secure computing. This work presents a contrasting perspective: customizing numerical optimization specifically for secure settings. We propose a seemingly less-favorable optimization method that can in fact significantly accelerate privacy-preserving logistic regression. Leveraging this new method, we propose two new secure protocols for conducting logistic regression in a privacy-preserving and distributed manner. Extensive theoretical and empirical evaluations prove the competitive performance of our two secure proposals while without compromising accuracy or privacy: with speedup up to 2.3x and 8.1x, respectively, over state-of-the-art; and even faster as data scales up. Such drastic speedup is on top of and in addition to performance improvements from existing (and future) state-of-the-art cryptography. Our work provides a new way towards efficient and practical privacy-preserving logistic regression for large-scale studies which are common for modern science.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods