Probabilistic Elastic Matching for Pose Variant Face Verification

Pose variation remains to be a major challenge for realworld face recognition. We approach this problem through a probabilistic elastic matching method. We take a part based representation by extracting local features (e.g., LBP or SIFT) from densely sampled multi-scale image patches. By augmenting each feature with its location, a Gaussian mixture model (GMM) is trained to capture the spatialappearance distribution of all face images in the training corpus. Each mixture component of the GMM is confined to be a spherical Gaussian to balance the influence of the appearance and the location terms. Each Gaussian component builds correspondence of a pair of features to be matched between two faces/face tracks. For face verification, we train an SVM on the vector concatenating the difference vectors of all the feature pairs to decide if a pair of faces/face tracks is matched or not. We further propose a joint Bayesian adaptation algorithm to adapt the universally trained GMM to better model the pose variations between the target pair of faces/face tracks, which consistently improves face verification accuracy. Our experiments show that our method outperforms the state-ofthe-art in the most restricted protocol on Labeled Face in the Wild (LFW) and the YouTube video face database by a significant margin.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here