Probabilistic Joint Face-Skull Modelling for Facial Reconstruction

We present a novel method for co-registration of two independent statistical shape models. We solve the problem of aligning a face model to a skull model with stochastic optimization based on Markov Chain Monte Carlo (MCMC). We create a probabilistic joint face-skull model and show how to obtain a distribution of plausible face shapes given a skull shape. Due to environmental and genetic factors, there exists a distribution of possible face shapes arising from the same skull. We pose facial reconstruction as a conditional distribution of plausible face shapes given a skull shape. Because it is very difficult to obtain the distribution directly from MRI or CT data, we create a dataset of artificial face-skull pairs. To do this, we propose to combine three data sources of independent origin to model the joint face-skull distribution: a face shape model, a skull shape model and tissue depth marker information. For a given skull, we compute the posterior distribution of faces matching the tissue depth distribution with Metropolis-Hastings. We estimate the joint face-skull distribution from samples of the posterior. To find faces matching to an unknown skull, we estimate the probability of the face under the joint face-skull model. To our knowledge, we are the first to provide a whole distribution of plausible faces arising from a skull instead of only a single reconstruction. We show how the face-skull model can be used to rank a face dataset and on average successfully identify the correct match in top 30%. The face ranking even works when obtaining the face shapes from 2D images. We furthermore show how the face-skull model can be useful to estimate the skull position in an MR-image.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here