Temporal Logics Over Finite Traces with Uncertainty (Technical Report)

12 Mar 2019  ·  Fabrizio M. Maggi, Marco Montali, Rafael Peñaloza ·

Temporal logics over finite traces have recently seen wide application in a number of areas, from business process modelling, monitoring, and mining to planning and decision making. However, real-life dynamic systems contain a degree of uncertainty which cannot be handled with classical logics. We thus propose a new probabilistic temporal logic over finite traces using superposition semantics, where all possible evolutions are possible, until observed. We study the properties of the logic and provide automata-based mechanisms for deriving probabilistic inferences from its formulas. We then study a fragment of the logic with better computational properties. Notably, formulas in this fragment can be discovered from event log data using off-the-shelf existing declarative process discovery techniques.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here