Probably Approximately Correct MDP Learning and Control With Temporal Logic Constraints

28 Apr 2014  ·  Jie Fu, Ufuk Topcu ·

We consider synthesis of control policies that maximize the probability of satisfying given temporal logic specifications in unknown, stochastic environments. We model the interaction between the system and its environment as a Markov decision process (MDP) with initially unknown transition probabilities. The solution we develop builds on the so-called model-based probably approximately correct Markov decision process (PAC-MDP) methodology. The algorithm attains an $\varepsilon$-approximately optimal policy with probability $1-\delta$ using samples (i.e. observations), time and space that grow polynomially with the size of the MDP, the size of the automaton expressing the temporal logic specification, $\frac{1}{\varepsilon}$, $\frac{1}{\delta}$ and a finite time horizon. In this approach, the system maintains a model of the initially unknown MDP, and constructs a product MDP based on its learned model and the specification automaton that expresses the temporal logic constraints. During execution, the policy is iteratively updated using observation of the transitions taken by the system. The iteration terminates in finitely many steps. With high probability, the resulting policy is such that, for any state, the difference between the probability of satisfying the specification under this policy and the optimal one is within a predefined bound.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here