Progressive Boundary Refinement Network for Temporal Action Detection

AAAI 2020  ·  Qinying Liu, Zilei Wang ·

Temporal action detection is a challenging task due to vagueness of action boundaries. To tackle this issue, we propose an end-to-end progressive boundary refinement network (PBRNet) in this paper. PBRNet belongs to the family of one-stage detectors and is equipped with three cascaded detection modules for localizing action boundary more and more precisely. Specifically, PBRNet mainly consists of coarse pyramidal detection, refined pyramidal detection, and fine-grained detection. The first two modules build two feature pyramids to perform the anchor-based detection, and the third one explores the frame-level features to refine the boundaries of each action instance. In the fined-grained detection module, three frame-level classification branches are proposed to augment the frame-level features and update the confidence scores of action instances. Evidently, PBRNet integrates the anchorbased and frame-level methods. We experimentally evaluate the proposed PBRNet and comprehensively investigate the effect of the main components. The results show PBRNet achieves the state-of-the-art detection performances on two popular benchmarks: THUMOS’14 and ActivityNet, and meanwhile possesses a high inference speed.

PDF
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here