Progressive-Growing of Generative Adversarial Networks for Metasurface Optimization

29 Nov 2019  ·  Fufang Wen, Jiaqi Jiang, Jonathan A. Fan ·

Generative adversarial networks, which can generate metasurfaces based on a training set of high performance device layouts, have the potential to significantly reduce the computational cost of the metasurface design process. However, basic GAN architectures are unable to fully capture the detailed features of topologically complex metasurfaces, and generated devices therefore require additional computationally-expensive design refinement. In this Letter, we show that GANs can better learn spatially fine features from high-resolution training data by progressively growing its network architecture and training set. Our results indicate that with this training methodology, the best generated devices have performances that compare well with the best devices produced by gradient-based topology optimization, thereby eliminating the need for additional design refinement. We envision that this network training method can generalize to other physical systems where device performance is strongly correlated with fine geometric structuring.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods