Promoting Diversity for End-to-End Conversation Response Generation

27 Jan 2019Yu-Ping RuanZhen-Hua LingQuan LiuJia-Chen GuXiaodan Zhu

We present our work on Track 2 in the Dialog System Technology Challenges 7 (DSTC7). The DSTC7-Track 2 aims to evaluate the response generation of fully data-driven conversation models in knowledge-grounded settings, which provides the contextual-relevant factual texts... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet