Role-playing Prompt Framework: Generation and Evaluation

2 Jun 2024  ·  Xun Liu, Zhengwei Ni ·

Large language models (LLMs) exhibit impressive proficiency in natural language generation, understanding user instructions, and emulating human-like language use, which has led to significant interest in their application to role-playing scenarios. However, the manual collection of role-specific script data and the evaluation of model performance are resource-intensive processes. This paper introduces a prompt-based framework designed to leverage GPT's capabilities for the generation of role-playing dialogue datasets and the evaluation of role-playing performance. To validate the effectiveness of the GPT-based generation and evaluation, we further incorporate the recall-oriented Rouge-L metric, providing an additional quantitative measure of performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here