Prompting Vision Foundation Models for Pathology Image Analysis

The rapid increase in cases of non-alcoholic fatty liver disease (NAFLD) in recent years has raised significant public concern. Accurately identifying tissue alteration regions is crucial for the diagnosis of NAFLD but this task presents challenges in pathology image analysis particularly with small-scale datasets. Recently the paradigm shift from full fine-tuning to prompting in adapting vision foundation models has offered a new perspective for small-scale data analysis. However existing prompting methods based on task-agnostic prompts are mainly developed for generic image recognition which fall short in providing instructive cues for complex pathology images. In this paper we propose Q uantitative A ttribute-based P rompting (QAP) a novel prompting method specifically for liver pathology image analysis. QAP is based on two quantitative attributes namely K-function-based spatial attributes and histogram-based morphological attributes which are aimed for quantitative assessment of tissue states. Moreover a conditional prompt generator is designed to turn these instance-specific attributes into visual prompts. Extensive experiments on three diverse tasks demonstrate that our task-specific prompting method achieves better diagnostic performance as well as better interpretability. Code is available at \href .

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here