Proper-Composite Loss Functions in Arbitrary Dimensions

19 Feb 2019  ·  Zac Cranko, Robert C. Williamson, Richard Nock ·

The study of a machine learning problem is in many ways is difficult to separate from the study of the loss function being used. One avenue of inquiry has been to look at these loss functions in terms of their properties as scoring rules via the proper-composite representation, in which predictions are mapped to probability distributions which are then scored via a scoring rule. However, recent research so far has primarily been concerned with analysing the (typically) finite-dimensional conditional risk problem on the output space, leaving aside the larger total risk minimisation. We generalise a number of these results to an infinite dimensional setting and in doing so we are able to exploit the familial resemblance of density and conditional density estimation to provide a simple characterisation of the canonical link.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here