Proper Learning of Linear Dynamical Systems as a Non-Commutative Polynomial Optimisation Problem

4 Feb 2020 Quan Zhou Jakub Marecek

There has been much recent progress in forecasting the next observation of a linear dynamical system (LDS), which is known as the improper learning, as well as in the estimation of its system matrices, which is known as the proper learning of LDS. We present an approach to proper learning of LDS, which in spite of the non-convexity of the problem, guarantees global convergence of numerical solutions to a least-squares estimator... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet