Properly Learning Poisson Binomial Distributions in Almost Polynomial Time

12 Nov 2015  ·  Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart ·

We give an algorithm for properly learning Poisson binomial distributions. A Poisson binomial distribution (PBD) of order $n$ is the discrete probability distribution of the sum of $n$ mutually independent Bernoulli random variables. Given $\widetilde{O}(1/\epsilon^2)$ samples from an unknown PBD $\mathbf{p}$, our algorithm runs in time $(1/\epsilon)^{O(\log \log (1/\epsilon))}$, and outputs a hypothesis PBD that is $\epsilon$-close to $\mathbf{p}$ in total variation distance. The previously best known running time for properly learning PBDs was $(1/\epsilon)^{O(\log(1/\epsilon))}$. As one of our main contributions, we provide a novel structural characterization of PBDs. We prove that, for all $\epsilon >0,$ there exists an explicit collection $\cal{M}$ of $(1/\epsilon)^{O(\log \log (1/\epsilon))}$ vectors of multiplicities, such that for any PBD $\mathbf{p}$ there exists a PBD $\mathbf{q}$ with $O(\log(1/\epsilon))$ distinct parameters whose multiplicities are given by some element of ${\cal M}$, such that $\mathbf{q}$ is $\epsilon$-close to $\mathbf{p}$. Our proof combines tools from Fourier analysis and algebraic geometry. Our approach to the proper learning problem is as follows: Starting with an accurate non-proper hypothesis, we fit a PBD to this hypothesis. More specifically, we essentially start with the hypothesis computed by the computationally efficient non-proper learning algorithm in our recent work~\cite{DKS15}. Our aforementioned structural characterization allows us to reduce the corresponding fitting problem to a collection of $(1/\epsilon)^{O(\log \log(1/\epsilon))}$ systems of low-degree polynomial inequalities. We show that each such system can be solved in time $(1/\epsilon)^{O(\log \log(1/\epsilon))}$, which yields the overall running time of our algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here