Propose-and-Refine: A Two-Stage Set Prediction Network for Nested Named Entity Recognition

27 Apr 2022  ·  Shuhui Wu, Yongliang Shen, Zeqi Tan, Weiming Lu ·

Nested named entity recognition (nested NER) is a fundamental task in natural language processing. Various span-based methods have been proposed to detect nested entities with span representations. However, span-based methods do not consider the relationship between a span and other entities or phrases, which is helpful in the NER task. Besides, span-based methods have trouble predicting long entities due to limited span enumeration length. To mitigate these issues, we present the Propose-and-Refine Network (PnRNet), a two-stage set prediction network for nested NER. In the propose stage, we use a span-based predictor to generate some coarse entity predictions as entity proposals. In the refine stage, proposals interact with each other, and richer contextual information is incorporated into the proposal representations. The refined proposal representations are used to re-predict entity boundaries and classes. In this way, errors in coarse proposals can be eliminated, and the boundary prediction is no longer constrained by the span enumeration length limitation. Additionally, we build multi-scale sentence representations, which better model the hierarchical structure of sentences and provide richer contextual information than token-level representations. Experiments show that PnRNet achieves state-of-the-art performance on four nested NER datasets and one flat NER dataset.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here