Propositional Knowledge Representation and Reasoning in Restricted Boltzmann Machines

31 May 2017  ·  Son N. Tran ·

While knowledge representation and reasoning are considered the keys for human-level artificial intelligence, connectionist networks have been shown successful in a broad range of applications due to their capacity for robust learning and flexible inference under uncertainty. The idea of representing symbolic knowledge in connectionist networks has been well-received and attracted much attention from research community as this can establish a foundation for integration of scalable learning and sound reasoning. In previous work, there exist a number of approaches that map logical inference rules with feed-forward propagation of artificial neural networks (ANN). However, the discriminative structure of an ANN requires the separation of input/output variables which makes it difficult for general reasoning where any variables should be inferable. Other approaches address this issue by employing generative models such as symmetric connectionist networks, however, they are difficult and convoluted. In this paper we propose a novel method to represent propositional formulas in restricted Boltzmann machines which is less complex, especially in the cases of logical implications and Horn clauses. An integration system is then developed and evaluated in real datasets which shows promising results.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here