Protecting Individual Interests across Clusters: Spectral Clustering with Guarantees

8 May 2021  ·  Shubham Gupta, Ambedkar Dukkipati ·

Studies related to fairness in machine learning have recently gained traction due to its ever-expanding role in high-stakes decision making. For example, it may be desirable to ensure that all clusters discovered by an algorithm have high gender diversity. Previously, these problems have been studied under a setting where sensitive attributes, with respect to which fairness conditions impose diversity across clusters, are assumed to be observable; hence, protected groups are readily available. Most often, this may not be true, and diversity or individual interests can manifest as an intrinsic or latent feature of a social network. For example, depending on latent sensitive attributes, individuals interact with each other and represent each other's interests, resulting in a network, which we refer to as a representation graph. Motivated by this, we propose an individual fairness criterion for clustering a graph $\mathcal{G}$ that requires each cluster to contain an adequate number of members connected to the individual under a representation graph $\mathcal{R}$. We devise a spectral clustering algorithm to find fair clusters under a given representation graph. We further propose a variant of the stochastic block model and establish our algorithm's weak consistency under this model. Finally, we present experimental results to corroborate our theoretical findings.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods