Protecting the Protected Group: Circumventing Harmful Fairness

25 May 2019  ·  Omer Ben-Porat, Fedor Sandomirskiy, Moshe Tennenholtz ·

Machine Learning (ML) algorithms shape our lives. Banks use them to determine if we are good borrowers; IT companies delegate them recruitment decisions; police apply ML for crime-prediction, and judges base their verdicts on ML. However, real-world examples show that such automated decisions tend to discriminate against protected groups. This potential discrimination generated a huge hype both in media and in the research community. Quite a few formal notions of fairness were proposed, which take a form of constraints a "fair" algorithm must satisfy. We focus on scenarios where fairness is imposed on a self-interested party (e.g., a bank that maximizes its revenue). We find that the disadvantaged protected group can be worse off after imposing a fairness constraint. We introduce a family of \textit{Welfare-Equalizing} fairness constraints that equalize per-capita welfare of protected groups, and include \textit{Demographic Parity} and \textit{Equal Opportunity} as particular cases. In this family, we characterize conditions under which the fairness constraint helps the disadvantaged group. We also characterize the structure of the optimal \textit{Welfare-Equalizing} classifier for the self-interested party, and provide an algorithm to compute it. Overall, our \textit{Welfare-Equalizing} fairness approach provides a unified framework for discussing fairness in classification in the presence of a self-interested party.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here