Provable guarantees for decision tree induction: the agnostic setting

ICML 2020  ·  Guy Blanc, Jane Lange, Li-Yang Tan ·

We give strengthened provable guarantees on the performance of widely employed and empirically successful {\sl top-down decision tree learning heuristics}. While prior works have focused on the realizable setting, we consider the more realistic and challenging {\sl agnostic} setting. We show that for all monotone functions~$f$ and parameters $s\in \mathbb{N}$, these heuristics construct a decision tree of size $s^{\tilde{O}((\log s)/\varepsilon^2)}$ that achieves error $\le \mathsf{opt}_s + \varepsilon$, where $\mathsf{opt}_s$ denotes the error of the optimal size-$s$ decision tree for $f$. Previously, such a guarantee was not known to be achievable by any algorithm, even one that is not based on top-down heuristics. We complement our algorithmic guarantee with a near-matching $s^{\tilde{\Omega}(\log s)}$ lower bound.

PDF Abstract ICML 2020 PDF
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here