Provable tradeoffs in adversarially robust classification

9 Jun 2020  ·  Edgar Dobriban, Hamed Hassani, David Hong, Alexander Robey ·

It is well known that machine learning methods can be vulnerable to adversarially-chosen perturbations of their inputs. Despite significant progress in the area, foundational open problems remain. In this paper, we address several key questions. We derive exact and approximate Bayes-optimal robust classifiers for the important setting of two- and three-class Gaussian classification problems with arbitrary imbalance, for $\ell_2$ and $\ell_\infty$ adversaries. In contrast to classical Bayes-optimal classifiers, determining the optimal decisions here cannot be made pointwise and new theoretical approaches are needed. We develop and leverage new tools, including recent breakthroughs from probability theory on robust isoperimetry, which, to our knowledge, have not yet been used in the area. Our results reveal fundamental tradeoffs between standard and robust accuracy that grow when data is imbalanced. We also show further results, including an analysis of classification calibration for convex losses in certain models, and finite sample rates for the robust risk.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here