How much pre-training is enough to discover a good subnetwork?

31 Jul 2021  ·  Cameron R. Wolfe, Fangshuo Liao, Qihan Wang, Junhyung Lyle Kim, Anastasios Kyrillidis ·

Neural network pruning is useful for discovering efficient, high-performing subnetworks within pre-trained, dense network architectures. More often than not, it involves a three-step process -- pre-training, pruning, and re-training -- that is computationally expensive, as the dense model must be fully pre-trained. While previous work has revealed through experiments the relationship between the amount of pre-training and the performance of the pruned network, a theoretical characterization of such dependency is still missing. Aiming to mathematically analyze the amount of dense network pre-training needed for a pruned network to perform well, we discover a simple theoretical bound in the number of gradient descent pre-training iterations on a two-layer, fully-connected network, beyond which pruning via greedy forward selection [61] yields a subnetwork that achieves good training error. Interestingly, this threshold is shown to be logarithmically dependent upon the size of the dataset, meaning that experiments with larger datasets require more pre-training for subnetworks obtained via pruning to perform well. Lastly, we empirically validate our theoretical results on a multi-layer perceptron trained on MNIST.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods