Reinforcement Learning with General Value Function Approximation: Provably Efficient Approach via Bounded Eluder Dimension

Value function approximation has demonstrated phenomenal empirical success in reinforcement learning (RL). Nevertheless, despite a handful of recent progress on developing theory for RL with linear function approximation, the understanding of general function approximation schemes largely remains missing. In this paper, we establish a provably efficient RL algorithm with general value function approximation. We show that if the value functions admit an approximation with a function class $\mathcal{F}$, our algorithm achieves a regret bound of $\widetilde{O}(\mathrm{poly}(dH)\sqrt{T})$ where $d$ is a complexity measure of $\mathcal{F}$ that depends on the eluder dimension [Russo and Van Roy, 2013] and log-covering numbers, $H$ is the planning horizon, and $T$ is the number interactions with the environment. Our theory generalizes recent progress on RL with linear value function approximation and does not make explicit assumptions on the model of the environment. Moreover, our algorithm is model-free and provides a framework to justify the effectiveness of algorithms used in practice.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here