Provably Efficient Reinforcement Learning for Infinite-Horizon Average-Reward Linear MDPs

23 May 2024  ·  Kihyuk Hong, Yufan Zhang, Ambuj Tewari ·

We resolve the open problem of designing a computationally efficient algorithm for infinite-horizon average-reward linear Markov Decision Processes (MDPs) with $\widetilde{O}(\sqrt{T})$ regret. Previous approaches with $\widetilde{O}(\sqrt{T})$ regret either suffer from computational inefficiency or require strong assumptions on dynamics, such as ergodicity. In this paper, we approximate the average-reward setting by the discounted setting and show that running an optimistic value iteration-based algorithm for learning the discounted setting achieves $\widetilde{O}(\sqrt{T})$ regret when the discounting factor $\gamma$ is tuned appropriately. The challenge in the approximation approach is to get a regret bound with a sharp dependency on the effective horizon $1 / (1 - \gamma)$. We use a computationally efficient clipping operator that constrains the span of the optimistic state value function estimate to achieve a sharp regret bound in terms of the effective horizon, which leads to $\widetilde{O}(\sqrt{T})$ regret.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here