Proximal gradient method for huberized support vector machine

30 Nov 2015  ·  Yangyang Xu, Ioannis Akrotirianakis, Amit Chakraborty ·

The Support Vector Machine (SVM) has been used in a wide variety of classification problems. The original SVM uses the hinge loss function, which is non-differentiable and makes the problem difficult to solve in particular for regularized SVMs, such as with $\ell_1$-regularization. This paper considers the Huberized SVM (HSVM), which uses a differentiable approximation of the hinge loss function. We first explore the use of the Proximal Gradient (PG) method to solving binary-class HSVM (B-HSVM) and then generalize it to multi-class HSVM (M-HSVM). Under strong convexity assumptions, we show that our algorithm converges linearly. In addition, we give a finite convergence result about the support of the solution, based on which we further accelerate the algorithm by a two-stage method. We present extensive numerical experiments on both synthetic and real datasets which demonstrate the superiority of our methods over some state-of-the-art methods for both binary- and multi-class SVMs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods