Proximal Gradient Method with Extrapolation and Line Search for a Class of Nonconvex and Nonsmooth Problems

18 Nov 2017  ·  Lei Yang ·

In this paper, we consider a class of possibly nonconvex, nonsmooth and non-Lipschitz optimization problems arising in many contemporary applications such as machine learning, variable selection and image processing. To solve this class of problems, we propose a proximal gradient method with extrapolation and line search (PGels). This method is developed based on a special potential function and successfully incorporates both extrapolation and non-monotone line search, which are two simple and efficient accelerating techniques for the proximal gradient method. Thanks to the line search, this method allows more flexibilities in choosing the extrapolation parameters and updates them adaptively at each iteration if a certain line search criterion is not satisfied. Moreover, with proper choices of parameters, our PGels reduces to many existing algorithms. We also show that, under some mild conditions, our line search criterion is well defined and any cluster point of the sequence generated by PGels is a stationary point of our problem. In addition, by assuming the Kurdyka-${\L}$ojasiewicz exponent of the objective in our problem, we further analyze the local convergence rate of two special cases of PGels, including the widely used non-monotone proximal gradient method as one case. Finally, we conduct some numerical experiments for solving the $\ell_1$ regularized logistic regression problem and the $\ell_{1\text{-}2}$ regularized least squares problem. Our numerical results illustrate the efficiency of PGels and show the potential advantage of combining two accelerating techniques.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods