Proximal Quasi-Newton for Computationally Intensive L1-regularized M-estimators

We consider the class of optimization problems arising from computationally intensive L1-regularized M-estimators, where the function or gradient values are very expensive to compute. A particular instance of interest is the L1-regularized MLE for learning Conditional Random Fields (CRFs), which are a popular class of statistical models for varied structured prediction problems such as sequence labeling, alignment, and classification with label taxonomy. L1-regularized MLEs for CRFs are particularly expensive to optimize since computing the gradient values requires an expensive inference step. In this work, we propose the use of a carefully constructed proximal quasi-Newton algorithm for such computationally intensive M-estimation problems, where we employ an aggressive active set selection technique. In a key contribution of the paper, we show that the proximal quasi-Newton method is provably super-linearly convergent, even in the absence of strong convexity, by leveraging a restricted variant of strong convexity. In our experiments, the proposed algorithm converges considerably faster than current state-of-the-art on the problems of sequence labeling and hierarchical classification.

PDF Abstract NeurIPS 2014 PDF NeurIPS 2014 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here