Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization

We analyze stochastic algorithms for optimizing nonconvex, nonsmooth finite-sum problems, where the nonsmooth part is convex. Surprisingly, unlike the smooth case, our knowledge of this fundamental problem is very limited. For example, it is not known whether the proximal stochastic gradient method with constant minibatch converges to a stationary point. To tackle this issue, we develop fast stochastic algorithms that provably converge to a stationary point for constant minibatches. Furthermore, using a variant of these algorithms, we obtain provably faster convergence than batch proximal gradient descent. Our results are based on the recent variance reduction techniques for convex optimization but with a novel analysis for handling nonconvex and nonsmooth functions. We also prove global linear convergence rate for an interesting subclass of nonsmooth nonconvex functions, which subsumes several recent works.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here