Pseudo-Representation Labeling Semi-Supervised Learning

31 May 2020Song-Bo YangTian-li Yu

In recent years, semi-supervised learning (SSL) has shown tremendous success in leveraging unlabeled data to improve the performance of deep learning models, which significantly reduces the demand for large amounts of labeled data. Many SSL techniques have been proposed and have shown promising performance on famous datasets such as ImageNet and CIFAR-10... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet