Public Bayesian Persuasion: Being Almost Optimal and Almost Persuasive

12 Feb 2020  ·  Matteo Castiglioni, Andrea Celli, Nicola Gatti ·

Persuasion studies how an informed principal may influence the behavior of agents by the strategic provision of payoff-relevant information. We focus on the fundamental multi-receiver model by Arieli and Babichenko (2019), in which there are no inter-agent externalities. Unlike prior works on this problem, we study the public persuasion problem in the general setting with: (i) arbitrary state spaces; (ii) arbitrary action spaces; (iii) arbitrary sender's utility functions. We fully characterize the computational complexity of computing a bi-criteria approximation of an optimal public signaling scheme. In particular, we show, in a voting setting of independent interest, that solving this problem requires at least a quasi-polynomial number of steps even in settings with a binary action space, assuming the Exponential Time Hypothesis. In doing so, we prove that a relaxed version of the Maximum Feasible Subsystem of Linear Inequalities problem requires at least quasi-polynomial time to be solved. Finally, we close the gap by providing a quasi-polynomial time bi-criteria approximation algorithm for arbitrary public persuasion problems that, in specific settings, yields a QPTAS.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here