SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

Given data with noisy labels, over-parameterized deep networks can gradually memorize the data, and fit everything in the end. Although equipped with corrections for noisy labels, many learning methods in this area still suffer overfitting due to undesired memorization. In this paper, to relieve this issue, we propose stochastic integrated gradient underweighted ascent (SIGUA): in a mini-batch, we adopt gradient descent on good data as usual, and learning-rate-reduced gradient ascent on bad data; the proposal is a versatile approach where data goodness or badness is w.r.t. desired or undesired memorization given a base learning method. Technically, SIGUA pulls optimization back for generalization when their goals conflict with each other; philosophically, SIGUA shows forgetting undesired memorization can reinforce desired memorization. Experiments demonstrate that SIGUA successfully robustifies two typical base learning methods, so that their performance is often significantly improved.

PDF Abstract ICML 2020 PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here