PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization

CVPR 2021  ·  Guangming Wang, Xinrui Wu, Zhe Liu, Hesheng Wang ·

A novel 3D point cloud learning model for deep LiDAR odometry, named PWCLO-Net, using hierarchical embedding mask optimization is proposed in this paper. In this model, the Pyramid, Warping, and Cost volume (PWC) structure for the LiDAR odometry task is built to refine the estimated pose in a coarse-to-fine approach hierarchically. An attentive cost volume is built to associate two point clouds and obtain embedding motion patterns. Then, a novel trainable embedding mask is proposed to weigh the local motion patterns of all points to regress the overall pose and filter outlier points. The estimated current pose is used to warp the first point cloud to bridge the distance to the second point cloud, and then the cost volume of the residual motion is built. At the same time, the embedding mask is optimized hierarchically from coarse to fine to obtain more accurate filtering information for pose refinement. The trainable pose warp-refinement process is iteratively used to make the pose estimation more robust for outliers. The superior performance and effectiveness of our LiDAR odometry model are demonstrated on KITTI odometry dataset. Our method outperforms all recent learning-based methods and outperforms the geometry-based approach, LOAM with mapping optimization, on most sequences of KITTI odometry dataset.Our source codes will be released on

PDF Abstract CVPR 2021 PDF CVPR 2021 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here